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Abstract

The close-form 2-D normal force±displacement compliance relation (binder contact law) is derived for a system of

two elastic cylindrical particles bound by an elastic or visco-elastic binder based on the approach developed by Zhu

et al. (1996a,b, 1997b). A new result of ®nite particle size e�ect on the compliance is also obtained. One important

application of this binder compliance is in the area of the homogenization analysis of ®brous composites, and com-

putation of the binder compliance based e�ective transverse bulk modulus is conducted in this article with its com-

parison to the corresponding upper and lower bounds. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This article continues the e�ort in deriving the force±displacement compliance relations for a system of
two particles bound with a binder. The previous work done in this topic (Zhu et al., 1996a,b, 1997b) is the
derivation of 3-D contact laws. This article is devoted to the 2-D analysis (plane stress and plane strain).
Although the methodology employed in this article is similar to those given in the previous work, this study
presents a number of new results. The ®rst one is that the contact compliance now becomes dependent on
the size variable of cylindrical particles. This dependence provides a correlation of the volumetric ratio of
the binder to particles in the contact compliance with the ®ber volume ratio, an important quantity in
®brous composites. As such, the binder compliance can be delegated to its applications in the area of the
mechanics of ®brous composites.

Progression of the compliance derivation in this article begins with establishing the integral equations
that govern the contact pressure distribution at the interface of the particles and the binder. Two limiting
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cases with respect to (1) rigid binder and (2) rigid particles are ®rst pursued in which the exact compliances
can be solved analytically. Using those two limiting case solutions to construct the upper and lower bounds
then yields the two close-form contact compliances. Two more results of contact compliance are obtained
by substituting the pressure unknowns in the integral equations with the appropriate limiting-case solu-
tions. With four groups of contact compliance derived, the ®nal representation of contact compliances is
selected on a physically rational basis. Three types of contact compliance are obtained and they are (1)
elastic binder, (2) Maxwell binder and (3) Voigt binder. Particles are always assumed to be elastic.

Since the methodology employed in the aforementioned progression basically follows what is given in
Zhu et al. (1997a), Zhu (1998, 1999) and Zhu and Nodes (1999), most derivation steps are omitted and only
major results are presented.

Most studies on contact compliances make the assumption either explicitly or implicitly that the
ratio of the characteristic dimension of the contact area, denoted by a in this article, to that of the
contact particles, denoted by H, is in®nitesimal. Thus, in the analytical compliance analysis the in¯u-
ence from those terms that are proportional to (a/H)n, n � 1; 2; 3; . . . on compliance is discarded when
the power index n is greater than 1. This is also true in the foregoing 3-D compliance derivation. But
this article makes an e�ort in attempting a more vigorous analysis by using the concept of Taylor
series expansion that the term of (a/H)2 is incorporated in the compliance derivation. A compliance
comparison for a special case (zero binder thickness) will then be given, which includes the results from
this article as well as the other two of the non-Hertzian contact and the TimoshenkoÕs and GoddierÕs
solution.

As stated previously, one objective in pursuing this study is to seek the application of the contact
compliance in the area of mechanics of ®brous composites. The type of ®brous composites under con-
sideration is a unidirectional lamina. Assuming the ®ber distribution in a lamina is totally random, the
e�ective properties of the lamina is then statistically transversely isotropic (Hashin, 1983) and there are ®ve
independent e�ective elastic moduli (Fig. 1). Many methods have been developed in evaluating those
moduli which include engineering estimates, representative volume element (RVE), variational approach,
self-consistent scheme, composite cylinder assemblage (CCA), the upper and lower bond analysis, etc.
Recently, Zhu et al. (1997b), Zhu (1998, 1999), and Zhu and Nodes (1999) introduced a new approach in
which a contact mechanism based material property homogenization is characterized. The two transverse
moduli now can be approximated by a function of contact compliances. As the last task in this article, the
transverse bulk modulus, one of the two transverse moduli, will be computed and its comparison with those
from other methods will also be presented.

Fig. 1. Unidirectional ®ber composite.
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2. Formulation of the problem

Fig. 2 shows an axi-symmetric contact con®guration in an x±z coordinate in which two half-particles are
perfectly bonded by a thin binder. z � h�x� represents the geometry of interfacial boundary between the
particles and the binder, and is expressed as

h�x� � h0 1

�
� d

x2

a2

�
; �2:1�

where a is the contact arc length, h0 is the thickness of the binder at x� 0, and d, a dimensionless shape
parameter related to the curvature of particle surface, is limited in a range 06 d < 1. For a planer surface, d
is zero. For a circularly cylindrical particle, d is 1.

We denote the z-displacement ®eld in the particle w1(x,z), and in the binder w2(x,z), and the moduli Ep

and Eb, PoissonÕs ratio mp and mb for the particles and the binder, respectively (elastic binder). p(x) repre-
sents the interfacial normal pressure between the particles and the binder, and Pz is the z-direction resultant
force which is related to p(x) by

Pz �
Z a

ÿa
p�x�dx: �2:2�

The objective of this study is to seek for the plane stress case how much Pz is, if the plane z � h0 � H
moves downward by an amount of dz with the plane z � 0 remaining immovable. By de®nition, the relative
normal displacement between z � 0 and z � h0 � H (or the relative approach in the term of contact
mechanics) dz for the two contact bodies (binder and particle) is given by

dz � dzb � dzp; dzb �
Z h�x�

0

ez�x; z�dz; dzp �
Z h�x��H

h�x�
ez�x; z�dz; �2:3�

where, ez is the strain. dzb and dzp are the relative normal approach contributed by the binder and the
particle, respectively.

Since the binder is a thin layer or h0=H � 1, we approximate ez in the binder to be uniform in the z
direction. Then, dzb can be expressed by w2(x,z) at z � h�x� which follows:

dzb � w2�x; h�x�� � h�x� p�x�
Eb

: �2:4�

Fig. 2. Sketch of two cylindrical particles bound with a binder.
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For the analysis of deformation contribution from the particle, we assume that the characteristic di-
mension for the particle is much larger than that of the contact area between the particle and the binder, i.e.
a/H � 1, that it is justi®able to pursue the analysis based on a half-space premise. Using the result of
Johnson (1985), dzp can be expressed:

dzp � ÿ2

pEp

Z a

ÿa
ln jxÿ sjp�s�ds� const; �2:5�

and the parameter const is de®ned as (see Appendix A):

const � P
pEp

�2 ln H ÿ 1ÿ mp�: �2:6�

Assuming p(x) is an even function of x in ÿa < x < a, and substituting Eqs. (2.4)±(2.6) into Eq. (2.3)
yields the dz ÿ p�x� governing equation:

dz � h�x�p�x�
Eb

�ÿ2a
pEp

Z 1

0

ln j�x=a�2 ÿ s2jp�as�ds� P
pEp

2 ln
H
a

�
ÿ 1ÿ mp

�
: �2:7�

It can be seen that Eq. (2.7) is a second kind of Fredholm integral equation with a kernel which has a
logarithmic singularity. The interfacial pressure function, p(x), can be determined by solving Eq. (2.7).

3. Compliance solutions for elastic binder

3.1. Two limiting cases

The exact solution of the interfacial pressure p(x) in Eq. (2.7) is known for two limiting cases, namely (1)
rigid particle case (i.e., Ep !1 while Eb is ®nite), and (2) rigid binder case (i.e., Ep is ®nite while Eb !1).
In the rigid particle case, the relative displacement of the two contact bodies is contributed only from the
deformation of binder. Thus p(x) can be easily determined by (denoted as p1(x)):

p1�x� � EbCzbP
h�x� ; Czb � h0

���
d
p

2aEb arctg � ���dp � ; �3:1�

where d is the shape parameter de®ned in Eq. (2.1). The corresponding contact compliance is given by

dz � CzbP : �3:2�
For the case of rigid binder, using the integral identity:

1 � ÿ2

p ln 2

Z 1

0

ln jx2 ÿ s2j������������
1ÿ s2
p ds; �3:3�

the exact solution of p(x) is easily determined (Johnson, 1985) (denoted as p2(x)), and it reads

p2�x� � P

p
�������������������a2 ÿ x2�p : �3:4�

Substituting p(x) in Eq. (2.7) with p2(x) in Eq. (3.4) and imposing the condition: Eb !1, the compliance
relationship for the rigid binder case can be obtained accordingly:

dz � CzpP ; Czp �
2 ln �2H

a � ÿ �1� mp�
pEp

: �3:5�
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3.2. Upper bound compliance solution

Multiplying 1/h(x) with Eq. (2.7), and then integrating the equation over the range 06 x6 a, we obtain:

dz � CzbP � 2a
���
d
p

pEp arctg � ���dp �
Z 1

0

f �s; d�p�as�ds� P
pEp

2 ln
H
a

� ��
ÿ 1ÿ mp

�
; �3:6�

f �s; d� � ÿ
Z 1

0

ln jx2 ÿ s2jdx
1� dx2

: �3:7�

Utilizing the monotonic decreasing property of f �s; d� with respect to the variables s and d (Fig. 3), and
replacing f �s; d� with 2 since f �s; d� < f �s � 0; d � 0� � 2, the upper bound compliance relation is ob-
tained as:

dz < CzbP � Czpb1P ; �3:8�
where

b1 � 1�
2
��
d
p

arctg � ��dp � ÿ 2 ln 2

ln �2H
a � ÿ 1ÿ mp

> 1: �3:9�

3.3. Lower bound compliance solution

Multiplying p2(x) to Eq. (2.7), and then integrating the equation with respect to the variable s over the
range 0 < s < a, which yields:

dz � 4aCzb arctg � ���dp �
h0

���
d
p

Z a

0

p�x�h�x�dx��������������
a2 ÿ x2
p � CzpP : �3:10�

It is easily seen that h�x��a2 ÿ x2�ÿ0:5
in the integral in Eq. (3.10) increases with respect to x monoton-

ically in the range 06 x6 a, and setting x � 0 in h�x��a2 ÿ x2�ÿ0:5
in Eq. (3.10) can readily lead to the

following inequality:

Fig. 3. Monotonic behavior of f �s; d� with respect to s and d.
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dz > Czbb2P � CzpP ; �3:11�

where

b2 � 2arctg � ���dp ����
d
p < 1; 0 < d < 1: �3:12�

Based on the upper and lower bound solutions, the true compliance must meet two following in-
equalities:

b2Czb � Czp <
dz

P
< Czb � b1Czp: �3:13�

3.4. Two estimates based on physical approximation

The ®rst estimate is pursued by replacing p(s) in the integral in Eq. (3.6) with p2(x) given in Eq. (3.4)
because the integral in Eq. (3.6) represents the deformation contribution from the particle. The compliance
relation is

dz � �Czb � Czp�P : �3:14�

The second estimate is pursued by replacing p(x) in the integral in Eq. (3.10) with p1(x) given in Eq.
(3.1) because the integral represents the deformation contribution from the binder. The compliance
relation is

dz � �Czb � Czp�P : �3:15�

Based on those four estimates of contact compliance, we thereby select the normal compliance relation
given in both Eqs. (3.14) and (3.15) as the best estimate for this particle-binder system:

dz � CzP ; Cz � Czb � Czp: �3:16�

Eq. (3.16) indicates that the overall compliance corresponds to a serial connection of the two compli-
ances Czb and Czp as schematically shown in Fig. 4a, where Czp represents the particle compliance, and Czb

represents that of the binder.

Fig. 4. Equivalent spring-dashpot compliance systems: (a) elastic binder and elastic particle; (b) Maxwell binder and elastic particle;

and (c) Voigt binder and elastic particle.
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4. Visco-elastic binder

4.1. Maxwell model

The normal stress±strain relationship in the thin layer of Maxwell binder is given by (integral repre-
sentation):

ez�x; t� � p�x; t�
Eb

� 1

g

Z t

0

p�x; s�ds; �4:1�

where ez�x; t� denotes the normal strain, p�x; t� denotes the normal interfacial stress, and g is the viscosity
constant. The governing integral equation in Eq. (2.7) corresponding to the Maxwell binder now becomes

dz�t� � h�x� p�x; t�
Eb

� h�x�
g

Z t

0

p�x; s�ds �ÿ2a
pEp

Z t

0

ln ��x=a�2 ÿ s2�p�as; t�ds

� P�t�
pEp

2 ln
H
a

� ��
ÿ 1ÿ mp

�
: �4:2�

Again, we attempt to derive an upper bound compliance, a lower bound compliance, and two com-
pliance estimates for the case of Maxwell binder. Since the derivation basically copies what is done in the
elastic binder case, only the results are given and they are

upper bound dz�t�6 �Czb � b1Czp�P �t� � CzbEb

g

Z t

0

P �s�ds; �4:3�

lower bound dz�t�P �Czbb2 � Czp�P �t� � Czbb2

Eb

g

Z t

0

P �s�ds; �4:4�

two estimates dz�t� � �Czb � Czp�P �t� � Czb

Eb

g

Z t

0

P�s�ds; �4:5�

where b1 and b2 are de®ned in Eqs. (3.9) and (3.12), respectively. We select the compliance relation given in
Eq. (4.5) as the best estimate for the case of Maxwell binder. Its rate-dependent form is

_dz�t� � �Czb � Czp� _P �t� � Czb

Eb

g
P �t�; �4:6�

where the symbol ``.'' denotes the derivative with respect to time.

4.2. Voigt model

The stress±strain relationship in its integral representation for the Voigt binder is given by

ez�x; t� �
Z t

0

p�x; s�
g

exp

�
ÿ Eb

g
�t ÿ s�

�
ds: �4:7�

Accordingly, the governing integral equation is

dz�t� � h�x�
g

Z t

0

p�x; s�exp

�
ÿ Eb

g
�t ÿ s�

�
ds�ÿ2a

pEp

Z t

0

ln ��x=a�2 ÿ s2�p�as; t�ds

� P�t�
pEp

2 ln
H
a

� ��
ÿ 1ÿ mp

�
: �4:8�
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Again, the derivation procedure is omitted and the ®nal results are listed:

upper bound dz�t�6 b1CzpP �t� � Czb

Eb

g

Z t

0

p�s� exp

�
ÿ Eb

g
�t ÿ s�

�
ds; �4:9�

lower bound dz�t�P CzpP �t� � b2Czb

Eb

g

Z t

0

p�s� exp

�
ÿ Eb

g
�t ÿ s�

�
ds; �4:10�

two estimates dz�t� � CzpP �t� � Czb

Eb

g

Z t

0

P �s� exp

�
ÿ Eb

g
�t ÿ s�

�
ds �4:11�

We select the compliance relation given in Eq. (4.11) as the best estimate for the case of Voigt binder, and
its rate-dependent version is

dz�t� � Eb

g
dz�t� � Czb

_P �t� � �Czb � Czp�Eb

g
P�t�: �4:12�

Fig. 4b and c depict two spring-dashpot systems that represent equivalently Eq. (4.6) for the Maxwell
binder and Eq. (4.12) for the Voigt binder, respectively.

5. Analysis of ®nite (a/H) ratio

Deriving the contact compliances given in the above so far takes the assumption that a/H � 1. This
assumption is re¯ected in Eqs. (2.5) and (2.6) that the parameter const is a constant determined in Eq. (A.1)
in which the integral in the right-hand side of Eq. (A.1) is ®rst expanded into a Taylor series of (a/H)n,
n � 0; 1; 2; . . . and then the truncation is made to those terms (a/H)n with the power index n being greater
than zero. To pursue a more vigorous analysis, the parameter const needs to include higher orders of a/H.
For this purpose, Eq. (A.1) is modi®ed to include the terms of (a/H) and (a/H)2 and the parameter const
now is a function of x and reads

const � P �2 ln H ÿ 1ÿ mp�
pEp

� 2� mp

pH 2Ep

Z a

ÿa
�xÿ s�2p�s�ds: �5:1�

Replacing const in Eq. (2.5) with the above expression yields the contact governing equation for the
elastic binder which contains the term of (a/H)2:

dz � h�x�p�x�
Eb

�ÿ2a
pEp

Z 1

0

ln ��x=a�2 ÿ s2�p�as�ds� �2� mp�x2P
pH 2Ep

� P
pEp

2 ln
H
a

� ��
ÿ 1ÿ mp

�
� 2�2� mp�a3

pH 2Ep

Z 1

0

s2p�as�ds: �5:2�

Eq. (5.2) is again a second kind of Fredholm integral equation with a kernel which has a logarithmic
singularity and a free term having both a constant and x2. A similar compliance derivation will be con-
ducted here. The ®rst step is to derive the limiting case of rigid binder by letting Eb in Eq. (5.2) approach to
in®nite, and the governing equation for the rigid binder case is

dz � ÿ2a
pEp

Z 1

0

ln ��x=a�2 ÿ s2�p2�as�ds� �2� mp�x2P
pH 2Ep

� P
pEp

2 ln
H
a

� ��
ÿ 1ÿ mp

�
� 2�2� mp�a3

pH 2Ep

Z 1

0

s2p2�as�ds; �5:3�
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where, p2(x) is again denoted as the pressure variable for the rigid binder case. The force balance condition
is

P � a
Z 1

ÿ1

p2�as�ds: �5:4�

The exact solution for p2(x) is also available. Baker (1978) proved the following integral identity:Z 1

ÿ1

ln j�x=a� ÿ sj
������������
1ÿ s2
p

ds � ÿ p
4

�
� p

2 ln 2

�
� p

2

x2

a2
; ÿa6 x6 a: �5:5�

Based on both Eqs. (3.3) and (5.5), p2(x) can be composed as:

p2�x� � q1P��������������
a2 ÿ x2
p � q2P

a2

��������������
a2 ÿ x2
p

; �5:6�

where q1 and q2 are two undetermined dimensionless constants. By carrying out the integration in Eq. (5.4)
(force balance) with p2(x) being de®ned in Eq. (5.6), one linear equation with respect to q1 and q2 is ob-
tained:

1 � q1p� 0:5q2p: �5:7�
Also, by implementing the integration in Eq. (5.3), with p2(x) being de®ned in Eq. (5.6), the following
identity is obtained:

�dz ÿ C�zpP � � P q2

�
ÿ �2� mp�a2

pH 2

�
x2 � 0; �5:8�

C�zp � Czp ÿ 2q2 ln 2

Ep

: �5:9�

Consolidating Eqs. (5.7)±(5.9) yields the following results:

q1 � 1

p
ÿ 0:5q2; �5:10�

q2 � �2� mp�a2

pH 2
; �5:11�

and the compliance relation for the rigid binder case is now

dz � C�zpP �5:12�

C�zp � Czp ÿ 2 ln 2�2� mp�a2

pH 2Ep

: �5:13�

Regarding the rigid particle case, it can be easily seen that when setting Ep !1 in Eq. (5.2), p1(x)
de®ned in Eq. (3.1) is still a valid solution. Thus, the compliance relation for the rigid particle case remains
unchanged for both in®nitesimal and ®nite (a/H) ratios.

The subsequent analysis on the upper and lower bounds, and two estimates on the physical approxi-
mation is an almost repeating process referring to what is done in Section 3. The conclusion is that all the
results from the previous section remain valid for the current study of ®nite (a/H) ratio after replacing Czp

in Eq. (3.5) with C�zp in Eq. (5.13). For the elastic binder case, the compliance relation is

dz � �Czb � C�zp�P : �5:14�
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The same conclusion is also true for the case of Maxwell and Voigt binder. All the results from Section 4
remain valid after replacing Czp in Eq. (3.5) with C�zp in Eq. (5.13).

6. Complaince comparison

The case under study in this section is a system of two particles bound with a binder. One limiting case of
this system is that when the binder disappears and two particles come into contact. The particle compliance
derived from the current analysis is represented by Czp in Eq. (3.5) and C�zp in Eq. (5.13). This is also the case
in which two previous studies were done; one is called the non-Hertzian contact (Johnson, 1985), and the
other can be found in the book of Timoshenko and Goddier (1951). In this section, those four compliances
are ®rst normalized (CN) and listed as follows:

CN � pEpCzp

�1ÿ m2
p�2 ln �2H

a �
� 1ÿ mp

�1ÿ mp�2 ln �2H
a �

�non-Hertzian contact�;

� 1� 2 ln 2ÿ 1

2 ln �2H
a �

�Timoshenko;Goddier�;

� 1ÿ 1

�1ÿ mp�2 ln �2H
a �

�current; a=H � 1�;

� 1ÿ
1

1ÿmp
� 2 ln 2�2ÿmp�a2

�1ÿmp�H2

2 ln �2H
a �

; �current; finite a=H�: �6:1�

By setting mp � 0:25, all four normalized compliances in Eq. (6.1) are computed and plotted in Fig. 5
versus a/H. The curves in Fig. 5 show that when a/H is near zero, all four compliances approaches 1. But
®nite values of a/H do make a di�erence to the compliances. Fig. 5 also shows that the ®nite a/H ratio e�ect
on compliance is the increase in the contact sti�ness. This sti�ness increase is physically correct because now
a ®nite region, not a half in®nite space as assumed in the derivation of other three compliances, contributes
the accumulation of the deformation to dz.

7. Transverse bulk modulus

Following the notation used by Hashin (1983), the stress±strain equations for a unidirectional ®brous
composite sketched in Fig. 1 and for the plane strain case (e11� 0) may be written as:

Fig. 5. CN versus a/H. From top to bottom: non-Hertzian contact, Timoshenko and Goddier, current result with a/H � 1, and current

result with ®nite a/H.
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r22 � �k� � G�T �e22 � �k� ÿ G�T �e33;

r33 � �k� ÿ G�T �e22 � �k� � G�T �e33;
�7:1�

where, r22, r33 are the e�ective stresses, e22 and e33 are the e�ective strains. k� and G�T are called transverse
bulk modulus and transverse shear modulus, respectively. Here the distribution of ®bers is assumed to be
totally random. The study of the upper and lower bounds for k� were conducted by Hashin (1983)and Hill
(1964) and they are expressed as:

lower bound k��lower� � k1 � V2

1=�k2 ÿ k1� � V1=�k1 � G1� ; �7:2�

upper bound k��upper� � k2 � V1

1=�k1 ÿ k2� � V2=�k2 � G2� ; �7:3�

where V1, G1 and k1 denote the volume ratio, shear modulus and transverse bulk modulus for the matrix,
respectively. V2, G2 and k2 denote the volume ratio, shear modulus and transverse bulk modulus for ®bers,
respectively.

Zhu et al. (1997a) introduced a contact mechanism based analysis of e�ective property for ®brous
composites. The stress±strain equations corresponding to Eq. (7.1) are
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where, Kn and Ks are the normal and tangential contact sti�ness coe�cients, respectively. Observing Eqs.
(7.1) and (7.4) easily reveals

k� � 5Kn

2
���
3
p � 5

4
���
3
p �Czb � C�zp�

; �7:5�

where, Kn, by de®nition, is inversely proportional to half of the compliance given in Eq. (5.14).
The compliance representation given in Eq. (5.14) is derived for the plane stress case. Replacing mp with

mp=�1ÿ mp�, 1=Ep with �1ÿ m2
p�=Ep and 1=Eb with �1ÿ m2

b�=Eb in the derivation gives rise to the compliance
result for the plane strain case. Thus, now we can compute k� for the plane strain case, and compare it with
the upper and lower bounds expressed in Eqs. (7.2) and (7.3).

Fig. 6 shows the values of k� determined by three methods: the upper bound, de®ned in Eq. (7.2); the
lower bound de®ned in Eq. (7.3) and the contact based evaluation de®ned in Eq. (7.5). Those k� values vary
depending on the ratio of YoungÕs modulus for ®bers to that of the matrix for four levels of ®ber ratio:
V2� 0.4, 0.5, 0.6 and 0.7. It can be seen that the contact based k� falls between the upper and lower bounds.

8. Summary

This article presents a study of the force±displacement interaction of two cylindrical particles bound with
a binder. The objective is to derive a close-form representation for the contact compliance. The e�ort made
in this article is succeeded in this regard. Three simple compliance results are arrived for elastic binder,
Maxwell binder and Voigt binder. Although the results are presented for the plane stress case, replacing mp
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with mp=�1ÿ mp�, 1=Ep with �1ÿ m2
p�=Ep and 1=Eb with �1ÿ m2

b�=Eb in derived compliances yields the so-
lution for the plane strain case.

Another major work of this article is to include the analysis on the e�ect of ®nite ratio for a/H on
compliances. This inclusion is important because one of the applications for deriving contact compliances
aims at the area of the mechanics of ®brous composites. Eliminating the condition of in®nitesimal a/H in
the compliance derivation makes the connection of how to apply the result obtained in this article to their
application in composite materials.

As an example of the compliance application in evaluating e�ective properties of an unidirectional ®ber
composite, one of the moduli, k� (transverse bulk modulus), is computed based on a contact mechanism
homogenization analysis and the contact compliances derived in this article. The results are presented in
Fig. 6 for the ®ber volume ratio being 0.4, 0.5, 0.6 and 0.7. These four ratios are chosen because they cover
mostly possible ®ber concentrations in typical engineering ®brous composites. The same k� quantity (lower
bound) can also be obtained by using the method of composite cylinder assemblage (CCA). CCA is a
method founded on the continuum concept. On the other hand, the contact method characterizes a discrete
approach. These two methods are very di�erent in that respect, but they share one thing that, simplistically
speaking, they follow in principle so called the iso-stress model that the physical element of ®bers and the
matrix is arranged in a series connection (Fig. 7a). Both methods give the values of k� that are not very
apart. Calculation of the upper bound for k� is based on the model of iso-strain in which the physical
element of ®bers and the matrix is arranged in a parallel connection (Fig. 7b). As such, when YoungÕs
modulus for ®bers becomes very big in comparison with that of the matrix, k� computed by CCA and the
contact method becomes dominantly dependent on YoungÕs modulus for the matrix, while the upper bound
for k� shows to be proportional to YoungÕs modulus for ®bers.

Fig. 6. Comparison of three values of transverse bulk modulus versus the ratio of Ef (YoungÕs Modulus of ®bers) to Em (YoungÕs
modulus of the matrix). V2 is the ®ber volume ratio. Dashed lines represent the contact result de®ned in Eq. (6.5).
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The Section 7 presents an analysis of how to pursue the binder compliance based evaluation of trans-
verse bulk modulus, and its results are given in Fig. 6. The evaluation of other e�ective modulus com-
ponents is also under pursuing. It appears that one important advantage of the contact mechanism based
analysis in the area of mechanics of composite materials is that the viscous nature of matrix materials can
be both analytically and quantitatively incorporated into the constitutive analysis by a physics based
delegation course. Most matrix materials in engineering composites show a viscous nature, and asphalt
pavement is one of them. One important application of the contact compliance for the Maxwell binder case
is in the simulation of asphalt pavement. Recently, a cylindrical creep model based on the contact mech-
anism is developed in simulating laboratory creep tests on asphalt pavement, in which the Maxwell contact
compliance is incorporated. More details can be found in the work by Zhu (1999), Zhu and Nodes (1999).
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Appendix A

The parameter const is de®ned as a value of an inde®nite integral at z � H , which reads (plane
stress):

const � 1

Ep

Z
�rz�x; z� ÿ mprx�x; z��dzjz�H ; �A:1�

where

rz � ÿ2z3

p

Z a

ÿa

p�s�ds

��xÿ s�2 � z2�2 ;

rx � ÿ2z
p

Z a

ÿa

p�s��sÿ x�2ds

��sÿ x�2 � z2�2 :
�A:2�

Imposing a/H � 1 and spelling out Eqs. (A.1) and (A.2) gives:

const � ÿ1

pEp

Z a

ÿa

H 2

�xÿ s�2 � H 2

"
ÿ ln ��xÿ s�2 � H 2�

#
p�s�dsÿ mpP

pEp

� mp

pEp

Z a

ÿa

�sÿ x�2p�s�ds

�xÿ s�2 � H 2

� P �2 ln H ÿ 1ÿ mp�
pEp

; a=H � 1: �A:3�

Fig. 7. (a) Iso-stress model, (b) iso-strain model.
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